Tourism demand from Europe to Mexico, 2005-2018: A cointegration analysis


  • José César Lenin Navarro-Chávez Instituto de Investigaciones Económicas y Empresariales
  • Mario Gómez Instituto de Investigaciones Económicas y Empresariales
  • René Augusto Marín-Leyva Instituto de Investigaciones Económicas y Empresariales


Palabras clave:

tourism demand, panel data, cross section dependence, panel cointegration, causality


This paper analyzes tourism demand in the countries of Europe for Mexi-co from 2005 to 2018. Unit root and cointegration tests in panel data are applied. Results indicate that there is presence of unit roots in the variables. A long-term equilibrium relationship was found among tourism demand, real exchange rate, and income, and also there are bidirectional causality relation-ships between these variables. The positive relationship among the variables implies that a depreciation of the domestic currency and a higher level of income of the releasing countries would generate greater tourism demand in Mexico.

Biografía del autor/a

José César Lenin Navarro-Chávez, Instituto de Investigaciones Económicas y Empresariales

Mario Gómez, Instituto de Investigaciones Económicas y Empresariales

René Augusto Marín-Leyva, Instituto de Investigaciones Económicas y Empresariales


Baltagi, B. H. (2005). Econometric analysis of panel data. John Wiley & Sons, Ltd. (3rd ed). John Wiley & Sons, Ltd.Chou, M. C. (2013). Does tourism development promote economic growth in transition countries? A panel data analysis. Economic Modelling, 33, 226–232., T., Sirakaya-Turk, E., & Crouch, G. I. (2017). Remodeling interna-tional tourism demand: Old theory and new evidence. Tourism Mana-gement, 60, 47–55., E. M., & Long, A. E. (2012). Tourism Development and Eco-nomic Growth in Developing Countries. The International Journal of Business and Finance Research, 6(1), 51–63.Falk, M. (2015). The sensitivity of tourism demand to exchange rate changes: an application to Swiss overnight stays in Austrian mountain villages dur-ing the winter season. Current Issues in Tourism, 18(5), 465–476.

Fletcher, J., Fyall, A., Ilbert, D., & Wanhill, S. (2017). Tourism: Principles and Practice. Harlow: Pearson.Frechtling, D. (2011). Forecasting tourism demand. Economics of Tourism Des-tinations. New York: Routledge., C. W. J. (1988). Some recent development in a concept of causality. Journal of Econometrics, 39(1–2), 199–211. Akter; Shoaib Akhtar; Samina Ali. (2017). Tourism Demand in Ban-gladesh: Gravity Model Analysis. Tourism, 65(3), 346–360.Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in het-erogeneous panels. Journal of Econometrics, 115(1), 53–74., A., Faroughi, P., & Rahim, K. A. (2015). Modeling and forecast-ing of international tourism demand in ASEAN countries. American Journal of Applied Sciences, 12(7), 479–486. Yazdi, S., & Khanalizadeh, B. (2017). Tourism demand: a panel data approach. Current Issues in Tourism, 20(8), 787–800., C. (2006). A survey of tourism demand modelling practice: issues and implications. In International Handbook on the Economics of Tourism (pp. 46–78). Northampton: Edward Elgar.Martins, L. F., Gan, Y., & Ferreira-Lopes, A. (2017). An empirical analy-sis of the influence of macroeconomic determinants on World tourism demand. Tourism Management, 61, 248–260., S., Işik, C., & Özdemir, D. (2017). The Effects of Real Exchange Rates and Income on International Tourism Demand for the USA from Some European Union Countries. Economies, 5(4), 51.ón Mundial de Turismo. (1995). Conceptos, definiciones y clasifi-caciones de las estadísticas de turismo. Madrid: Organización Mundial de Turismo.Organización Mundial de Turismo. (2014). Barómetro OMT del turismo mun-dial y anexo estadístico. Madrid.Organización Mundial de Turismo. (2017). Barómetro OMT del turismo mun-dial y anexo estadístico. Madrid.Panosso Netto, A., & Lohmann, G. (2012). Teoría del turismo. Conceptos, modelos y sistemas. México: Trillas.Pedroni, P. (1999). Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxford Bulletin of Economics and Statis-tics, 61(s1), 653–670.

Peng, G. B., Song, H., & Witt, S. F. (2012). Demand modeling and forecast-ing. In L. Dwyer, A. Gill, & N. Seetaram (Eds.), Handbook of Research Methods in Tourism Quantitative and Qualitative Approaches (pp. 71–90). Northampton: Edward Elgar Publishing Limited.Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled Mean Group Estima-tion of Dynamic Heterogeneous Panels. Journal of the American Statistical Association, 94(446), 621–634.Rigol, L. M. M. (2009). Conceptualización de la demanda turística. Ciencias Holguín, XV(2002), 1–8.Schmöll, G. . (1977). Schmöll, G.A. Londres: Tourism International Press.Secretaría de Turismo. (2015). DATATUR.Secretaría de Turismo. (2017). Compendio Estadístico del Turismo en México 2017. México: Dirección General de Integración de Información Secto-rial. Retrieved from, N. (2010). Use of dynamic panel cointegration approach to model international arrivals to australia. Journal of Travel Research, 49(4), 414–422., J. H., Park, S. Y., & Yu, L. (2009). The analysis of the relationships of Korean outbound tourism demand: Jeju Island and three interna-tional destinations. Tourism Management, 30(4), 530–543., E. (2015). Forecasting tourist arrivals to Turkey. Tourism, 63(4), 435–445.